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ABSTRACT 

This report presents some observations on cyclic arithmetic 

codes and their distance-properties. The main result is the demon- 

stration that modular arithmetic weight is invariant to cyclic shifts 

of codewords. A s  a consequence of this result, it is shown that the 

minimum distance of a cyclic arithmetic code can be found by a search 

of less than one-sixth of the codewords. This result also permits a 

simple proof of a result due to Goto and Fukmura for computation of 

arithmetic weighs in terms of the residue classes modulo B, the 

number of codewords. 



I. IN!I%ODUCTIOZV 

It w i l l  be assumed t h a t  t h e  reader i s  familiar w i t h  t h e  concepts 

of ari thmetic weight and dis tance,  denoted AW and AD respec t ive ly ,  as 

described by Massey (6 ) .  

de f in i t i ons ,  t h e  first due t o  Reitweisner ( 7 ) ,  and t h e  other  two due 

t o  Garcia (3 ) .  

We s h a l l  a l s o  require  t h e  following t h r e e  

Defini t ibn 1 The nonadjacent form (NAF) of an in teger  I i s  the 

i unique expression fo r  I of t h e  form I = 2 a.2 where a E { - l , O , l }  i=o 1 i 

a n d a  a = 0,  5 0 .  i i+l 

The ar i thmetic  weight of I i s  t h e  number of non-zero terms i n  

t h e  NAF f o r  I ,  

only i n  the  s ign of t h e i r  respect ive terms. 

Note t h a t  AW(1)  = AW(-I) s ince these two NAF d i f f e r  

Defini t ion 2 The modular ar i thmetic  weight of an in teger  I, 

r e l a t i v e  t o  t h e  modulus m, denoted M A W ( 1 )  i s  defined as: 

MAW(1) = min [ A W ( I ) ,  AW(m-I)] .  

Example 1: L e t  m = 31 

MAW (21) = min [AW(21), AW(31-21)] 

= min [AW(21), A W ( l O ) ]  

= min [3,2] 

= 2  

It should be noted t h a t  MAW does not necessar,,y satisfy t h e  

t r i a n g l e  inequal i ty ,  as seen i n  t h e  next example. 

Example 2: Let m = 35 

MAW (3+19) = MAW (22) = 3 but  MAW (3)  = MAW (19) = 1 

Defini t ion 3 The modular ar i thmetic  dis tance (MAD) between 

in tegers  I and I is :  1 2 

MAD (11.12) = MAW (II1-I2l) 



MAD i s  not i n  general  a t r u e  metric s ince t h e  t r i a n g l e  inequal i ty  

fails  f o r  ce r t a in  modulo's. 

Example 3: L e t  m = 35 

MAD (0,221 = MAW (22) = 3 

But MAD (0 ,3)  = MAD (3,22) = 1 

Garcia (3)  has however shown t h a t  f o r  modulo's of t h e  form 2n o r  

2n-l t h e  t r i a n g l e  inequal i ty  does hold, and hence MAD i s  a true metric 

f o r  these valpes of t h e  modulus. 

Defini t ion 4 The arithmetic code with B codewords generated 

by the  integer  A i s  t h e  set of in tegers  (O,A,2A, . . . ( B - l ) A l .  

It i s  customary t o  think of t h e  codeword A . N as r e su l t i ng  from 

t h e  encoding of t he  information d i g i t  N, and ar i thmetic  codes are 

of ten  ca l led  AN codes f o r  t h i s  reason. 

An AN code i s  s a i d  t o  be cyc l ic  i f  t he  n-place cyc l ic  s h i f t  o f  

t h e  rad ix  two 

word, where n 

proper t ies  of 

form of every codeword i s  the  rad ix  two form of a code- 

i s  defined by AB = 2 -1. 

cycl ic  ar i thmetic  codes are:  

n Some of t h e  more convenient 

1) The codewords a r e  

n closed under addi t ion modulo m=2 -1 and, i n  f a c t ,  form an i d e a l  i n  

t h e  r i n g  of in tegers  modulo 2 -1. 

i s  also a codeword. 

n n 

3) t h e  minimum MAW and t h e  minimum AW of 

2)  If  I i s  a codeword then 2 -1-1 

Also 

t h e  nonzero codewords coincide. 

I n  the  res t  of  t h i s  report  unless  otherwise mentioned the modulus 

n m w i l l  be 2 -1 f o r  t h e  appropriate n. 



11. OBSERVATIONS 

Let [a,b] denote t h e  set of integers  I such t h a t  a 

(a,b] denote t h e  set of in tegers  I such t h a t  a < I < b.  

W . =  (0,2n-1] where AB = 2n-l i s  of considerable i n t e r e s t  i n  t h e  theory 

I b and 

The s e t  - 

of cyc l ic  AN codes. The lower t h i r d  ( L 3 )  of W i s  defined t o  be t h e  

set (0 ,  - 2n], t h e  middle t h i r d  ( M 3 )  as the  set (Zn, 2n+1-l] and t h e  

upper t h i r d  ( U 3 )  as t h e  s e t  ( 2  -1 2 -11. 
3 3 n+l  n 3 

3 
If [an an-1 . . . a 1 i s  t h e  concatenation of t h e  coef f ic ien ts  

0 

i n  t h e  NAF of an integer  IEW then: 

I E L3 i f  and only i f  an = an,l = o  

I E M3 i f  and only i f  an = 0,  an-l = 1 

I .E U 3  i f  and only i f  a = 1, a = 0 

Five lemmas w i l l  be given t h a t  simplify t h e  proofs of the 'subse-  

n n-1 

quent theorems. 

Lema 1 For any in tegers  I and J, 

AW(I) - AW(J) AW(I+J) AW(I) + AW(J) 

Proof: By t h e  t r i ang le  inequal i ty  

AW(I+J) - < AW(I) + AW(J) 

again by the  t r i a n g l e  inequal i ty  AW(1) = AW(-J + (I+J) - < AW(-J) + AW(I+J )  

or AW(I) - AW(J) AW(I+J) 

Lemma 2 For any integer  I and any modulus m ,  MAW (I) = MAW (m-I). 

Proof: Follows d i r ec t ly  from t h e  de f in i t i on  of modular ar i thmetic  

weight. 

The next lemma shows t h a t  for an integer  I i n  t h e  lower t h i r d  of W, 

t h e  modular ari thmetic and ar i thmetic  weighs coincide.  
, 

Lema 3 For I E L 3  then 

MAW ( I )  = AW ( I )  



Proof: 

n-2 n 
i=o  i=o  1 

thus 

AW (2n-I) = A w ( I )  + 1 since t h e  NAF of I may be wr i t t en  

C ai2i so t h a t  2n -nz2 a.2i i s  already t h e  N A F  for 2 -I. 

AW(2n-I-1) - > AW(2n-I) - AW(1) 

- > AW(I) + 1 - I 
- > AW(I). 

and hence M A W ( 1 )  = min k A W ( I ) ,  AW(2n-l-I)] = AW(1) 

The next two lemmas relate t h e  ari thmetic weight of I and t h e  

ar i thmetic  weight of 1-1 according t o  the  endings of I i n  NAF.  I f  

a.2i i s  t h e  NAF of I ,  we s h a l l  of ten represent t h i s  NAF as t h e  i=o  1 

concatenation of i t s  coef f ic ien ts  i n  descending order l e t t i n g  P 

f? 

represent +1, and N represent -1. For instance,  I=3 has t h e  NAF 

22 - 2' which we s h a l l  denote by POX. The notation OP(ON)i denotes 

t h e  sequence i n  which OP i s  followed by i repe t i t i ons  of t h e  subse- 

quence ON. It should be noted t h a t  t h e  cases i n  t h e  two lemmas are 

j u s t  s h i f t s  of each other .  

Lemma 4 For an odd integer  I, 

AW(1) - 1 5 AW (1-1) AW(1). 

The only possible endings f o r  I i n  NAF are OP(ON)i or Proof: 

OO(0N)j where i 0, j 1. 

Subtracting one r e s u l t s  i n  NAF's with endings 

O O ( P O ) ~  or O(NO) ( ~ 0 ) j - l .  

I n  t h e  first case 

I n  t h e  second case AW(1-1) = AW(1).  

AW(1-1) = AW (I) - 1. 

Lemma 5 For an even integer  I ,  

AW(I) 5 AW (1-1) AW(I) + 1. 

Proof: The possible  endings i n  NAF f o r  I are 

PO(NO)i or OO(NO) i  where i 2 o 

Subtracting one r e s u l t s  i n  t h e  NAF's 

OP ( o P ) ~  or  ON ( 0 ~ ) ~ .  



I n  the  first case 

I n  the  second case 

AW (1-1) = AW (I) 

AW (1-1) = AW(1) + 1. 

Theorem 1 For I E W then 

MAW (I) = AW ( I )  

i f  (1) I E ~3 

(ii) I E 143 and even 

otherwise MAW (I) = AW (2n-1-1) 

Proof I E L 3  by Lemma 3 previously 

I E U 3  by Lemmas 3 and 4 previously 

I E M 3  and I even 

AW (2n-l) = AW (I) 

AW (2n-1-1) - < AW (I) + 1 

.*.  MAW (I) = AW (I) 

I E M 3  and I odd 

AW (2n-I) = AW (I)  

AW ( 2n-I-1) AW ( 2n-I ) 

AW (1) 

.'. 
Defini t ion 5 

form i s  the  n-place cycl ic  s h i f t  of t h e  radix two form of I. 

Similar ly ,  l e t  T (I) be t h e  in teger  corresponding t o  the  i - th  cyc l ic  

MAW ( I )  = AW (2n-1-1)- 

L e t  I E W and T (I) be the  integer  whose rad ix  two 

i 

s h i f t .  

T(I) = 21 - 2n+1 i f  I E (P-1,  2 -11. 

Note t h a t  T ( 1 )  = 21 i f  I E (0,2n-1-1] and 

n 

The following theorem shows t h a t  modualr ar i thmetic  weight i s  

invar ian t  t o  cyc l ic  s h i f t s .  



Theorem 2 For I E W I$AW(I) = MAW lT(I)], 

Proof I E (0,2~-~-11 

I E L3 T(1) E L3 or T(1) E M3 and T(1) even 

MAW(1) = AW(21). = AW(1) = MAW(1) 

I E M3 and I even MAW(1) = AW(1) 

T(1) E U3 and MAW(21) = AW(2n-1-21) 

but AW(2n-21) = AW(1) -1 since 2n-21 ends in 00 

AW(2nf-21-1) = AW(1) - 1 + 1 = MAW(1) 

I E M3 and I odd MAW(1) = AW(2n-l-I) 

T(I) E U3 

MAW(21) = AW(2n-1-21) 

AW(2n-I) = AW(1) 

AW(2n-21) = AW(1) -1 

and by lemmas 3 and 4 

AW(1) LAW(2n-I-l) - < AW(1) - 1 
AW(1) (AW(2n-21-1) - < AW(1) - 1 

and the equalities go together 

:. MAw(21) = MAw(1) 

n I E (2n-1-1, 2 -13 

MAW(1) = MAW(2n-1-I) 

MAW(T(I)) = mw(21-2~+1.) = ~~w(2(2~-1-1)) 

but since from the previous parts of the theorems 
n-1) MAW(J) = MAW(2J) J E [0,2 

then MAW(1) = MAW[T(I)]. 



Corollzry 2 The minimum dis tance of a cycl ic  AN code i s  t h e  minimum 

of t h e  ar i thmetic  weights of i t s  non-zero odd codewords i n  t h e  lower 

t h i r d .  

Proof: 

t h e  non-zero,codewords i s  a t ta ined  by an odd codeword i n  L3. 

I i s  an even codeword then I i s  one or  more cyc l i c  s h i f t s  of an odd 

codeword. 

I' i s  an even codeword. 

It must be shown t h a t  t h e  minimum of t h e  ari thmetic weighs of 

If 

The odd codewords i n  U 3  and M 3  are  obtained by T(1 ' )  where 

The following development r e l a t e s  t he  ar i thmetic  weight of in tegers  

i n  L 3  t o  the  cyc l ic  group of t h e  powers of 2 modulo B and t h e  cosets 

of t h i s  cyc l ic  group. 

Defini t ion 6 

a a .  =O. n-1 0 

Example 4 

The NAF of I E W i s  sa id  t o  be cyc l i c  nonadjacent i f  

L e t  I = 11 

NAF of I = (PONON) i s  not cyc l ic  nonadjacent i f  n=5 but  i s  

cyc l ic  nonadjacent i f  n>5. 

Note t h a t  any number i n  L3 o r  i n  M3 and even, automatically. i s  

cyc l ic  nonad j acent . 
Defini t ion 7 

n-place cyc l ic  s h i f t  of t he  NAF f o r  I. 

it' cycl ic  s h i f t .  

Example 5 

For I E L3, l e t  Z ( 1 )  be the  in teger  whose NAF i f  the 

Similarly l e t  Z i ( I )  be t h e  

Note t h a t  Z i ( I )  may be negative. 

L e t  I = 11 and n = 6 

I = OPONON = 11 

Z (I)  = PONONO = 22 1 

2 

3 

4 

5 

Z ( I )  = ONONOP = -19 

Z (I) = NONOPO = -38 

(I)  = ONOPON = -13 Z 

Z ( I )  = NOPONO = -26 

= 11 6 z (I) = I 



Lemma 6 $(I) = T i ( I )  i f  Zi > 0 ,  otherwise Z i ( I )  = T i (I)-2 n +1. 

Proof: 

same in teger  or d i f f e r  by exact ly  2 -1. But s ince cyc l ic  s h i f t i n g  

It su f f i ces  t o  show tha t  T i ( I )  and Zi(I)  are e i t h e r  t h e  

n 

always doubles the  in tegers  with perhaps t h e  addi t ion or subtract ion 

of 2n-13 ‘it follows t h a t  

o < T i ( I )  < 2n and -2n < Z i ( I )  < 2 

T i ( I )  f Z i ( I )  mod 2n-l a l l  i and a l s o  

n so  the  conclusion follows. 

The following theorem gives us - simple counting procedure t o  

f ind  t h e  AW of an in teger  i n  L3. 

Theorem 3 For I E L3 

AW(1) = #{i : T i ( I ) € M 3 ,  i = 0,l ... N-1) 

- Proox: 

But an 

i f  and only i f  I Z i ( I )  I E L ~  by lemma 6 t h i s  i s  equivalent t o  

Ti(I)&L3 or (2n-l) - T i ( I ) & L 3 .  

Ti(I)cU3. Hence a $0 i f  and only i f  Ti(I)&M3. 

AW(1)  i s  j u s t  t he  number of non-zero terms i n  the  NAF of I. 

i s  t h e  leading term i n  t h e  NAF of Z i ( I )  and hence i s  zero - -  

But 2n-1-Ti(I)~L3 i s  equivalent o t  

n-1-i 

Let M3B t h e  “middle t h i r d  of B” be the  set of in tegers  I such 

B 2B t h a t  A I E M ~ .  

a consequence t h e  following corol lary due o r ig ina l ly  t o  Goto and 

It i s  readi ly  checked that  M3B = (- -1. We now have as 
3’ 3 

Fuhumura (4) and used by them t o  simplify the  Barrows-Mandelbaum codes. 

Corollary 3 The minimum distance of a cycl ic  AN code i s  given by 

min #{i : ZiL mod B&M3B3 i = 0 , l . .  . (n- l ) )  

L < B/3 

L odd 

Proof: 

i s  t h e  same as #{i . 2 ( A I )  mod A B E M ~ ) ,  

AW(A1) = #{i : Ti(AI)cM3 i = O,l..(n-l)] but  #{i : Ti(AI)cM3} 

. i  And that is the same as 

#{i : 2iI mod B E M ~ B )  

This corol lary shows t h a t  t h e  minimum ari thmetic  weight of t h e  

non-zero codewords of a cyc l ic  ari thmetic code can be obtained without 

ever ac tua l ly  constructing the  codewords but simply by considering 

in tegers  modulo B. 
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